Search results

Search for "SNOM characterization" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

  • Jad Sabek,
  • Francisco Javier Díaz-Fernández,
  • Luis Torrijos-Morán,
  • Zeneida Díaz-Betancor,
  • Ángel Maquieira,
  • María-José Bañuls,
  • Elena Pinilla-Cienfuegos and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 967–974, doi:10.3762/bjnano.10.97

Graphical Abstract
  • sites towards the target sample. Then, the biofunctionalized PBG biosensor has been used to perform a direct and real-time detection of the target BSA antigen. Keywords: evanescent field; half-antibodies; light-assisted immobilization; photonic bandgap sensor; SNOM characterization; Introduction The
  • Given the importance of the evanescent field profile on the sensing performance, the near-field behavior of the PBG sensing structures has been studied using SNOM. Figure 2 schematically depicts the tailored SNOM characterization setup used in this work, where light from a tunable laser was coupled to
  • Figure 4b. Note that an excitation wavelength of 1550 nm was used for the FDTD evanescent field characterization in order to consider the same scenario than in the experimental SNOM characterization, i.e., a distance of 20 nm from the PBG edge. Both for the SNOM measurements shown in Figure 4a and for
PDF
Album
Full Research Paper
Published 26 Apr 2019
Other Beilstein-Institut Open Science Activities